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Summary. The opportunities of applying the Fuzzy-C-Means (FCM) algorithm for cluster analysis to 
study composition-property relations are discussed. Physical properties of 98 aluminosilicate glasses 
serve as an example. The influences of the initial partition and of the number of clusters chosen are 
discussed in detail. The FCM algorithm allows to find characteristic members of clusters (these form 
the "nuclei" of the clusters) and to find outliers of the data set under consideration. Thus the results 
of the cluster analysis form a basis for a deeper understanding of relations between the composition 
and properties of the glasses studied. 
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Anwendung des Fuzzy-C-Means-Algorithmus bei der Untersuehung von Beziehungen zwischen Zusam- 
mensetzung und Eigenschaften: Physikalische Eigenschaften yon Gliisern 

Zusammenfassung. Es werden die M6glichkeiten des Fuzzy-C-Means-(FCM)-Algorithmus ffir 
Cluster-Analysen zur Untersuchung von Zusammensetzung-Eigenschafts-Relationen diskutiert. Die 
physikalischen Eigenschaften von 98 Aluminosilikat-G1/isern dienen als Beispiel. Es wird der EinfluB 
von Anfangsverteilung und Clusteranzahl untersucht. Der FCM-Algorithmus erlaubt das Auffinden 
von charakteristischen Teilen von Clustern (diese bilden den ,,Kern" des Clusters) und auch yon 
AuBenseitern des betrachteten Datensatzes. Somit liefern die Ergebnisse der Clusteranalyse die 
Grundlage ffir ein tieferes Verst~indnis der Beziehungen zwischen Zusammensetzung und Eigenschaften 
von G1/isern. 

Introduction 

The  presence  of  a large set of  e x p e r i m e n t a l  d a t a  which  have  (i) to be eva lua t ed  
conce rn ing  their  reliabili ty,  (ii) to be  sys t emat i zed  with  respect  to the p r o b l e m  unde r  
cons ide r a t i on  and,  finally (iii) to be  in te rpre ted ,  is the  c o m m o n  s i tua t ion  in a 
scientist 's  dai ly  work .  Class i f ica t ion me thods ,  like e.g. c luster  analysis  [ 1 - 3 ]  offer 
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the opportunity to support evaluation, systematization and interpretation of data 
sets. Cluster analysis is a tool to subdivide a given set of objects characterized by 
definite properties into groups (clusters) of similar objects. This subdivision forms 
a basis to test or to develop hypotheses about the source for similarities or differences 
of the properties of the objects under study [1]. 

In chemistry today application of cluster analysis is well established, e.g. in 
analytical chemistry [-5, 6], NMR [-7-9], EPR [,10, 11], Raman [12] spectroscopies, 
and also used to systematize further chemical and physical properties [13, 14]. 

Since cluster analysis may be used to test or to develop hypotheses it may also 
support the study of relations between chemical composition, structure and 
properties of"objects" [-15-18]. In this field non-hierarchical methods have proofed 
to be valuable tools for the data treatment [,1, 3, 19]. One can decide between (i) 
methods which lead to a so called "hard partition" (e.g., k-Means [1]) and (ii) 
methods which use the theory of fuzzy sets [-20-24]. In the framework of the last 
method one object may belong to more than one cluster, i.e., each object belongs 
to each cluster with a certain "degree of membership". Thus the result of a cluster 
analysis based on the theory of fuzzy sets is a table which contains the degrees of 
membership for all objects under consideration. 

It is advantageous to have the chance to assign an object to more than one 
cluster since such an assignment can given evidence for outliers or hybrids, i.e., 
objects which should be excluded from an interpretation first. According to 
Bratchell this advantage may be one reason that fuzzy cluster analysis "will receive 
more attention in the future" [-4]. 

It is the objective of this work to demonstrate, from a chemist's point of view, 
the problems and advantages resulting from the application of the FCM method to 
the study of composition-property relations. As an example a set of physical 
property data of glasses is used. This set offers the advantages, that (i) chemical 
composition of the objects could be varied stepwise and in a wide range, thus 
forming a comparably large data set and (ii) results of the application of k-Means 
to a respective set of objects are already known [18] so it will be possible to compare 
expense and profit of the different algorithms. 

Objects and Methods 

The objects chosen are 98 glasses of the CaO-A1203-SiO2 system characterized by 
the values of the physical properties molar refraction, molar volume of oxygen, 
transformation temperature and coefficient of linear thermal expansion. The 
distribution of these glasses in the composition diagram can be taken from Fig. 1. 

Autoscaling (e.g. [25]) was applied to the experimentally determined values of 
the physical properties under consideration before performing the cluster analysis. 
The normalization of the data was sensible because no arguments could support 
any weighting of the properties. 

The cluster algorithm applied here is the Fuzzy-C-Means (FCM) method. The 
ideas of the fuzzy theory are described in [,20-22], in a short form quite under- 
standable for chemists in [,24], and the basic principles of FCM are described in 
detail in Refs. [-9, 23, 26, 27]. Our calculations are based on the computer program 
listed in [-27] and essentially we follow the notations and abbreviations used there. 
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Fig. 1. Graphical display of composition (mol ~o) of glasses under consideration 

661 

The results will be compared with those of the k-Means (KM) method (cf. 
[18, 28]). Both of these algorithms, FCM and KM, are nonhierarchical ones. Within 
FCM one object may partially belong to more than one cluster, whereas in the result 
of k-Means, being a special case of FCM, each object belongs to only one cluster. 
The membership of the objects Yk of the clusters u i is described by a degree ui(Yk)  = Uik 
(i = 1, . . . ,  C; k = 1,. . . ,  n), with c being the number of clusters and n being the number 
of objects. The membership degrees Uik form the matrix U. For the further treatment 
the degree of membership has to be regarded as normalized in the range between 0 

1; ykE Yi 
and 1; so for FCM Uik~[O, 1] is valid and for k-Means Uik = holds, 

0; otherwise 
Y~ is the hard partition of the sample set Y, (compare [27]). Both methods minimize 
the sum over intra class distances (optimization parameter). 

For FCM the functional 

J,,,(U,v>= ~ ~ (Uik)mllyk--ViH 2 (1) 
i = l k = l  

has been proposed by Bezdek et al. [27] as a metric, analogous to the functional of 

k-Means ~ ~ IlYk-Vgll 2 
i = 1 k e Y i  

Here vl is the center of gravity of the cluster i, v is the vector of the centers and 
m is a weighting exponent, m~[1, ~).  As a distance we have applied the Euclidean 
distance 

x / H e R  --  vi 112 = N /  (Yk -- vi)T(yk --  l)i)" 

The application to N MR data of glassy aluminosilicates is described in [12, 29]. 
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Obviously the formation of clusters is not only influenced by the data structure 
but also by some other quantities. For  k-Means these quantities are the predestined 
number of clusters, the normalization of the data as well as the initial distribution 
of the objects within the clusters [9, 11, 18], and FCM additionally is affected by the 
weighting exponent m [9, 27, 29]. As formula 1 shows, the optimization parameter  
depends on the input value m, which controlls the delocalization of the objects over 
the clusters. If m approaches 1, then the results of FCM tend to be identical to those 
of the k-Means algorithm, i.e., for m = i k-Means is a special case of FCM. For  large 
values of m, exactly if m tends to infinity, then the objects are homogeneously dis- 
tributed over all clusters. This leads to a result which contradicts to the aim of cluster 
analysis to bring out the structure of an unknown data matrix and to show objects 
with common and similar properties. The parameter  m has not  any substantial 
meaning in our case. It is an empirical quantity, reasonable selection of which has 
to be decided by a sensible interpretability of the results. Examination of Bezdek 
et al. [27] has pointed out that a sensible range lies between 1.5 ~< m ~< 3. If m = 3 
holds, then our calculation with the data set of physical properties of alumosilicate 
glasses and with artificial data [30] have shown that the clusters have to establish 
a clearly distinguishable structure, i.e. the sums of the intra cluster distances have 
to be small in comparison with the inter cluster distances, otherwise the results are 
hardly interpretable. For  our data set the weighting exponent m = 2 caused a 
diminution of the membership degree to a value of about 0.7 of many objects. These 
were to many objects as to be useful for our purposes to extract the core of the 
cluster from its surrounding. If m = 1.5 was chosen, then the results led to a 
plausible interpretability. 

It is the focus of this work to investigate the influence of the initial partition on 
the results of cluster analysis. The assertions with regard to the sensibility of the 
normalization and the distance measure were already given above. The argumenta- 
tion for the selection of a reasonable cluster number from the point of view of 
interpretability has been performed in a previous work [12]. There was additionally 

shown, that the dependence of the entropy He(U)= _ --  ~ ~ ~ ! Ui k log(uik ) o n  the 
k = l i = l  n 

cluster number  c, recommended in [27] for the identification of the "true" cluster 
number with some limitations, was not helpful for the interpretation of our com- 
plicated data  structure. The dependence of the end partition on the initial partition 
for the cluster algorithms applied by us is caused by the property of many optimization 
procedures to find a local minimum which is not necessarily the global one. F rom 
a first theoretical point of view it should be possible to find the global minimum by 
total enumerat ion when applying conventional cluster procedures to a finite number 
of objects. This fails because of the combinatorial  augmentat ion of the initial 
partitions with the number  of objects. 

For  procedures like k-Means there exist investigations about the dependency of 
the result on the initial partition. A common recommendat ion suggests to calculate 
the end partitions from a sufficiently large number of initial partitions (100 or 
more) and to regard that end partition as the right one which exhibits the smallest 
optimization parameter. Another  method of verification consists in applying the 
results of hierarchical cluster strategies as an input for the nonhierarchical ones. At 
third it has been shown in [18] how to diminish the ambiguities of interpretation 
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by constructing generalized partitions based on a collective treatment of multiple 
end partitions. By this means some of the objects under consideration in the present 
work were already successfully classified as not clearly assignable, especially those 
that where scattered in the transition region of two or more clusters. For objects 
being situated in the property space rather distant from cluster centers, their 
detection as delocalized ones was less successful. In our investigation we have led 
similar investigations on the influence of the initial partition for the FCM and have 
compared the results with those got by k-Means [18]. For the latter purpose it was 
sometimes necessary to adjust the results from FCM with those from k-Means, that's 
why we had partially to withdraw the basic principles of FCM - the assignment of 
one object to more than one c lu s t e r - i n  the course of the interpretation of the 
results. 

The calculations presented here are based on the FORTRAN program given in 
[27], which was implemented on a PDP-like computer. The procedure was extended 
permitting us to create up to 100 initial partitions and to preselect the end partitions, 
being practically "identical" - really very similar. By doing so the expense to explain 
the results of the FCM procedure was greatly diminished. Two partitions have 
been regarded as "identical" if the differences of all the membership degrees A uik 
were not greater than 0.05. So, in the worst case, end partitions with A Uik = 0.1 were 
accepted as identical, what is sensible and allowable for our purposes. Additionally 
the algorithm of generating the random initial partitions was modified, i.e. 

Rik 
Uik -- 

~ Rik 
i = l  

For every object and cluster a [O,1]-distributed random number (Rik) is assigned 
and divided by the sum of the random numbers over the clusters to guarantee the 

normalization condition ~ u~k = 1. 
i = l  

Results and Discussion 

Table 1 summarizes the data optimization parameter, entropy and frequency 
characterizing the end partitions obtained for a partition of the 98 objects into two 
to five clusters and gives the numbers of different end partitions found by applying 
the k-Means method to the same data set. 

A visual analysis of the presorted results of FCM-analysis of 100 initial partitions 
has reduced the number of end partitions to be regarded as different as follows: 3 
c lusters-  4 end partitions, 4 c lusters-  2 end partitions and 5 c lus ters-  1 end 
partition. This visual analysis should be explained for cluster 4 in more detail. In 
Figs. 2 a -c  three partitions are visualized for that cluster number by a plot of the 
first and second principal components (for a description of principal component  
analysis see e.g. [3]) of the autoscaled data. Objects having Uik >~ 0.9 are characterized 
by its cluster index, 0.8 ~< Uik < 0.9 by capital letters, and 0.6 ~< uik < 0.8 by small 
letters, respectively. The relations 1-A-a, 2-B-b and so on hold. All other objects are 
signed by the asterisk "*". The plots 2 a -c  are in accordance to the sequence of the 
partitions of Table 1. The difference between the assignments in Figs. 2 a and 2 b 
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Fig. 2. Principal component plots (a-e) of preselected partitions got for 4 clusters. Numbers 
characterize the nucleus of the cluster where uik ~> 0.9, capital letters the range 0.8 ~< uik < 0.9, small 
letters the range 0.6 ~< uik < 0.8, according to the relation 1-A-a; all other objects are signed by " * "  

The end partitions a-e are in accordance with the sequence of Table 1 

stems from two objects (50 and 62), which are translated only from one range A Uik 
into an adjacent one. The membership degrees U~k of object 62 with respect to the 
appropriate partitions are (0.02, 0.904, 0.04, 0.03)* and (0.02, 0.898, 0.05, 0.04)*, 
respectively, which means that both partitions are practically identical; only the 
rather arbitrary assignment of the boundary of 0.9 led to the discrimination. 

An analogous conclusion is valid for object 50. The numerical values (not given 
here) have also shown that neither object 50 nor 62 was responsible for the 
distinction during the preselection, but one of the objects where Ugk < 0.6 holds. The 
visual analysis has shown that both partitions are equivalent with respect to their 
interpretability. 

On the other hand the situation is very different with Fig. 2 c. Whilst the differences 
between clusters 1 and 4 with regard to the appropriate clusters in Fig. 2 a,b are 
characterized by small transitions within the adjacent A U~k-ranges and are negligible 
from the interpretive point of view, clusters 2 and 3, however, show a completely 
different structure. The further partitioning (examination of 5 clusters) acts on those 
clusters  2 and  3 as m a y  be seen  f r o m  Fig. 3. H e r e  the first par t i t ion  wi th  respect  to  
Table 1 is presented. From a similar analysis performed for 5 clusters, according to 

* Nonfulfillment of normalization because of round off errors 



666 F. Ehrentreich et al. 

Table 1. Parameters of the different end partitions got starting from 100 different initial partitions 
within Fuzzy-C-Means and k-Means clustering of the objects under consideration 

Number Optimization Entropy Frequency Number of end 
of clusters parameter [~o] partitions/k-Means [18] 

2 188 0.193 100 - 

3 139 0.299 78 4 
146 0.377* 12 
146 0.377 8 
151 0.442 1 
151 0.438 1 

4 104 0.408* 90 8 
104 0.408 8 
112 0.468 2 

5 86 0.458 49 8 
86 0.460 33 
86 0.457 14 
86 0.459 4 

* Though the same optimization parameters and entropies were obtained for two end partitions for 
cluster numbers 3 and 4 each, these are different concerning the criterion (AUik < 0.05) used here (see 
text) 
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Fig. 3. Principal component plot of preselected partitions obtained for 5 clusters of the first partition 
of Table 1; the meaning of the symbols is the same as in Fig. 2 
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that one described above, is to be concluded that all of the four preselected end 
partitions are practically identical. From Figs. 2 a-c  and 3 it can also be concluded, 
that the principal component plots already express the cluster structure in rough 
outlines. For certain objects the higher principal components are significant and 
hence in the plots of only two principal components these objects, though they are 
fuzzy ones, are projected into the core (cores of the clusters are outlined by an 
unbroken line). 

Thus, after having got a first insight into the differences between the end 
partitions for a subdivision of the objects into four and five clusters by using the 
principal components plots (Figs. 2 a-c  and 3) a more detailed discussion shall be 
based on the assignments of the objects to the clusters according to the membership 
functions (FCM) including a comparison to the results of k-Means cluster analysis 
[18]. Figure 4 again shows the differences between the end partitions for four clusters 
obtained by FCM and also the respective end partition got by applying the k-Means 
method. Each box represents one cluster and the four clusters (denoted I to IV) 
belonging to one partition are arranged in one row. The FCM cluster boxes are 
subdivided by broken lines according to certain ranges for the membership 
functions. All objects were assigned to that cluster where they have the largest value 
of membership function, e.g. in the most frequent partition object 87 has the 
following values of membership function: Cluster I: 0.347; cluster II: 0.262; cluster 
III: 0.354; cluster IV: 0.036. Thus it actually lies between clusters I to III but was 
according to our "rule" assigned to cluster III. 

Comparing these three different FCM end partitions the following is to be 
observed: (i) The two partitions with the optimization parameter of 104 are similar 
to each other in that the "compositions" of the clusters are similar, i.e., the same 
objects are always together in analogous clusters. (ii) The composition of the clusters 
forming the partition with the highest optimization parameter differs from the two 
other ones, despite cluster IV. (iii) For clusters of same composition belonging to 
different end partitions the values of the membership functions of the objects are 
different, e.g. for object 62 1/> Uik > 0.9 holds in the first, 0.9/> Uik > 0.8 in the second 
and 0.8 ~> UiR > 0.6 in the third partition. (Remember, that the discussion above 
showed that the differences between the first and second end partitions are 
practically negligible, but the differences between these two and the third end 
partition are significant.) The appropriate end partition with the lowest optimization 
parameter obtained by applying the k-Means algorithm [18] shows many 
similarities to the FCM end partitions but the compositions of the clusters are not 
identical. 

Figure 5 shows the results for a partition into five clusters (I to V) obtained by. 
applying the FCM method, and the k-Means generalized partition taken from [18]. 
The comparison of these end partitions yields the following peculiarities: (i) The 
comparison of the first, second.. ,  clusters respectively belonging to the different end 
partitions shows, that the respective clusters are always comprizing the same objects. 
The differences of the entropies belonging to each individual end partition indicate, 
that the entropies are obviously more sensitive to the changes in membership 
degrees than the criterion applied here. However, the discussion showed that the 
criterion choosen to differentiate the end partitions is sufficient. The scaling of the 
membership function arbitrarily chosen makes the differences between the different 
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Fig. 4. End partitions obtained by FCM and k-Means methods for partition of the 98 glasses into 
four clusters 

end partitions transparent, for 0.9 > uik differences between analogous clusters 
occur, cf. e.g. the data of object 76 (cluster I). (ii) In the range 1 ~> uik > 0.9 the clusters 
I to V belonging to different end partitions are identical, i.e., these 53 objects should 
serve as a starting point for the further interpretation of the partitions. Construction 
of a generalized partition from the k-Means cluster analysis led to the clusters given 
in Fig. 5 and four objects (78, 81, 89, 91) were called "difficult to classify" [18], i.e., 
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Fig. 5. End partitions obtained by FCM cluster analysis for partition ofthe98 glasses into four clusters 
and "generalized partition" obtained by using the k-Means method 
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they did not fit to any of the five clusters of the generalized partition. For all of these 
"dc" objects Uik < 0.8 holds. The generalized k-Means partition differs partially from 
the FCM partitions. 

The basis for further discussion will be the partition into five clusters depicted 
in Fig. 6. These clusters were constructed as follows: (i) Objects with values of 
uik ~> 0.9 form the core of the clusters I to V, and (ii) objects with u~k < 0.9 are 

/. , 

,' i , 

SiO z 

j f,, 

CoO AI20~ 

Fig. 6. Graphical display of the 
end partition obtained by FCM 
cluster analysis for partition of the 
98 glasses into five clusters and 
differentiating between objects with 
membership functions being greater 
than/equal to ( nuclei) or 
smaller than 0.9 ( . . . .  members) 
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Fig. 7. Plot of ranges of property data molecular refraction (MR), transformation temperature (Tg), 
molar volume of oxygen (V1) and coefficient of linear thermal expansion (c 0 for nuclei and members 
of clusters I to V 
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"members" of the clusters I to V. This arbitrary definition chosen here has the 
advantage, that the small differences between the different end partitions do not 
influence the "simplifyed" end partition got by discriminating between objects with 
membership functions being either >~ 0.9 or < 0.9. Figure 6 shows that the cores of 
the clusters are situated in closed compositional ranges and the members are 
arranged around the cores. Though this arrangement of the objects in the com- 
position diagram is an interesting and valuable result for the glass chemist, it is 
necessary to remind that the basis for the cluster analysis was not formed by the 
composition but by physical property data. Figure 7 shows the ranges of property 
values belonging to the objects which are forming centers and members of clusters 
I to V. The following peculiarities are to be observed: (i) The ranges of the properties 
of objects forming the centers of clusters are not necessarily smaller than the ranges 
for the objects being members of the respective clusters, (ii) the ranges of property 
data belonging to centers of different clusters may overlap. The degree of pair-wise 
overlapping between these property ranges depends on the properties, e.g., the 
centers of clusters I to IV overlap for V1 but are clearly different in case of T 0. 

The results discussed above allow the glass chemist to draw conclusions of the 
following kind: Within the glass forming range of a special system, e.g. CaO-A120 3- 
SiO 2, by means of cluster analysis certain compositional ranges may be deduced 
were the glasses are similar to each other regarding the properties under 
consideration. Such a result of a cluster analysis does allow to draw conclusions 
about possible combinations of property data for certain compositional ranges. 

Conclusions 

Summarizing the results, it has to be stated that the cluster procedure of the 
FCM-algorithm is influenced by the initial partition too. By choosing ulk < 0.5 as a 
criterion to differentiate between "different" end partitions and constructing 100 
different initial partitions, up to five different end partitions could be found for a 
given number of clusters. The different end partitions got for one cluster number 
have exhibited a clearly different cluster structure. Such a behavior was the origin 
for a further partitioning of the data up to 5 clusters. For the partition into five 
clusters an unequivocal partition could be found. An effect of k-Means, the 
fluctuation of single objects between different clusters, did not take place, which is 
understandable because those fluctuations occurred with the objects belonging to 
the surrounding, and here FCM comes to its full advantage identifying those objects 
as fuzzy classified. Partitions may appear, whose surrounding objects differ in 
membership degrees of about Auik ~--0.3. However, the principal conclusion that 
those objects are fuzzy classified will not be changed. 

Using the membership functions to discriminate cores and members of clusters 
the results of a FCM cluster analysis may be systematized. The obtained partitions 
support the solution of practical problems, e.g. the investigation and description of 
relationships between composition and properties of glasses. The definition of 
centers and members of clusters, taking the value of the membership function as a 
discriminating criterion, is advantageous especially for large numbers of objects, 
since the interpretation of the results may start from the cores, formed by a smaller 
number of objects. 
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